Step of Proof: mul_preserves_lt
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
mul
preserves
lt
:
1.
a
:
2.
b
:
3.
n
:
4.
a
<
b
(
n
*
a
) < (
n
*
b
)
latex
by ((NSubsetInd 3)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
: .....basecase..... NILNIL
C1:
3.
a
<
b
C1:
4.
n
:
C1:
5. 0 <
n
C1:
6. 1 =
n
C1:
(
n
*
a
) < (
n
*
b
)
C
2
: .....upcase..... NILNIL
C2:
3.
a
<
b
C2:
4.
n
:
C2:
5. 1 <
n
C2:
6. ((
n
- 1) *
a
) < ((
n
- 1) *
b
)
C2:
(
n
*
a
) < (
n
*
b
)
C
.
Definitions
,
P
Q
,
t
T
,
False
,
A
,
P
Q
,
Dec(
P
)
,
x
:
A
.
B
(
x
)
,
Lemmas
decidable
int
equal
,
nat
plus
properties
origin